Lifelong Path Planning with Kinematic Constraints for Multi-Agent Pickup and Delivery
نویسندگان
چکیده
منابع مشابه
Multi-Agent Path Finding with Kinematic Constraints
Multi-Agent Path Finding (MAPF) is well studied in both AI and robotics. Given a discretized environment and agents with assigned start and goal locations, MAPF solvers from AI find collision-free paths for hundreds of agents with userprovided sub-optimality guarantees. However, they ignore that actual robots are subject to kinematic constraints (such as finite maximum velocity limits) and suff...
متن کاملLifelong Multi-Agent Path Finding for Online Pickup and Delivery Tasks
The multi-agent path-finding (MAPF) problem has recently received a lot of attention. However, it does not capture important characteristics of many real-world domains, such as automated warehouses, where agents are constantly engaged with new tasks. In this paper, we therefore study a lifelong version of the MAPF problem, called the multiagent pickup and delivery (MAPD) problem. In the MAPD pr...
متن کاملSummary: Multi-Agent Path Finding with Kinematic Constraints
Multi-Agent Path Finding (MAPF) is well studied in both AI and robotics. Given a discretized environment and agents with assigned start and goal locations, MAPF solvers from AI find collision-free paths for hundreds of agents with user-provided sub-optimality guarantees. However, they ignore that actual robots are subject to kinematic constraints (such as velocity limits) and suffer from imperf...
متن کاملPath Planning with Kinematic Constraints for Robot Groups
Narrow Corridor 8 iRobot Create2 100 Agents Abstract: Path planning for multiple robots is well studied in the AI and robotics communities. For a given discretized environment, robots need to find collision-free paths to a set of specified goal locations. Robots can be fully anonymous, non-anonymous, or organized in groups. Although powerful solvers for this abstract problem exist, they make si...
متن کاملPath-constrained Motion Planning for Robotics Based on Kinematic Constraints
Common robotic tracking tasks consist of motions along predefined paths. The design of time-optimal path-constrained trajectories for robotic applications is discussed in this paper. To increase industrial applicability, the proposed method accounts for robot kinematics together with actuator velocity, acceleration and jerk limits instead of accounting for the generally more complex dynamic equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33017651